ALCOTEX WD100

Home

ALCOTEX WD100

  • Technology and Applications of ALCOTEX Series Secondary Suspension Agents
    Nov 10, 2025
    Polyvinyl chloride (PVC) is one of the most widely used plastics, and its properties largely depend on the morphology, porosity, and bulk density of the PVC particles formed during suspension polymerization. The role of the suspending agent is crucial in the suspension polymerization process. ALCOTEX series polyvinyl alcohol products are specifically developed as secondary suspending agents (or pore enhancers) to synergize with conventional primary suspending agents, jointly optimizing the microstructure and macroscopic properties of PVC resin. 1. What is an auxiliary dispersant? In complex dispersion systems, a single primary dispersant often struggles to simultaneously address multiple requirements such as wetting, depolymerization, and stabilization. This is where the role of auxiliary dispersants becomes prominent. They significantly improve the dispersion stability and flowability of the entire system by adjusting the surface tension of the system, improving the charge distribution between particles, and enhancing the adsorption capacity of the primary dispersant. In pigment systems, it reduces the risk of flocculation and sedimentation; In emulsion polymerization, it controls particle size distribution and polymerization rate; In rubber latexes, it prevents particle agglomeration and improves emulsion storage stability.   2. Comparison of Technical Characteristics of ALCOTEX Series Products Property Appearance Total Solids (%) Degree of Hydrolysis (mole %) Viscosity@23℃ (mPa.s) ALCOTEX 45 Colourless to pale straw/clear to slight haze 34.0 - 36.0 43.0 - 47.0 300 - 600 ALCOTEX 552P Slightly Yellow aqueous solution 39.5 - 40.5 54.0 - 57.0 800 - 1400 ALCOTEX 432P Water white to pale straw/clear to slight haze 39.0 - 41.0 43.0 - 46.0 100 - 180 ALCOTEX 552P Slightly Yellow aqueous solution 39.5 - 40.5 54.0 - 57.0 800 - 1400 ALCOTEX 55-002H Very pale yellow solution 38.5 - 39.5 54.0 - 57.0 1000 - 1500   High Hydrolysis Degree Products (approximately 55% mole %): 55-002H and 552P ALCOTEX 55-002H: A colloidal dispersion of polyvinyl alcohol (PVA) with a high degree of hydrolysis (54.0-57.0 mole %). Nuclear magnetic resonance (NMR) measurements show a random distribution of its acetate groups. For application, it is recommended to add a portion of the primary suspending agent before adding 55-002H to ensure good dispersion of the secondary additive. It is strictly forbidden to add it to the VCM feed line. ALCOTEX 552P: A 55% aqueous solution of hydrolyzed PVA, also with a high degree of hydrolysis. It has a low residual methanol content (<2% w/w) and a high cloud point (>45℃). It can be directly added to the reactor or pumped into a flowing water feed line. It is recommended to add 552P after adding at least a portion of the primary suspending agent.   Low degree of hydrolysis products (approximately 43%-45% mole %): WD100, 432P, and 45 ALCOTEX WD100: A 43% aqueous solution of hydrolyzed polyvinyl alcohol, characterized by extremely low methanol content (<2% w/w). It can be infinitely diluted with water. Compared to conventional products, WD100 provides higher porosity for PVC resin and reduces gel or "fisheye" formation. Unlike traditional secondary additives, WD100 can be added before the primary suspending agent, or as a stable primary/secondary suspending agent co-solution. Adding via the water feed line is recommended. ALCOTEX 432P: A low-viscosity methanol-based solution of 43% hydrolyzed polyvinyl alcohol, with the lowest viscosity in the series (100-180 mPa·s). Due to its methanol solubility, its storage and transportation must strictly comply with local regulations regarding flammability and toxicity. It is typically pumped directly into the reactor after the addition of water and the primary stabilizer. ALCOTEX 45: A 45% hydrolyzed polyvinyl alcohol (PVC) water/isopropanol solution with moderate viscosity (300-600 mPa·s). Due to the presence of isopropanol, it is also subject to local flammability regulations. Its nuclear magnetic resonance (NMR) results also show a random distribution of acetate groups. It is typically pumped into the reactor after the addition of water and the main suspending agent. All ALCOTEX products are designed to optimize the porosity/bulk density relationship, resulting in the following practical production advantages: Highly efficient VCM removal: Increased porosity allows for more thorough VCM release, permitting the use of gentler stripping conditions, potentially reducing stripping time, steam consumption, and stripping temperature. Optimized plasticizer absorption: Improves PVC's ability to absorb plasticizers, particularly beneficial for manufacturing flexible PVC products. Product consistency and design: ALCOTEX helps achieve a more uniform pore distribution and tends to make PVC particles more spherical, thus improving bulk density. This provides flexibility in polymer design, such as achieving higher conversion rates at a given porosity.   3. Conclusion  The ALCOTEX series of secondary suspending agents are powerful tools for S-PVC manufacturers to optimize product structure and improve production efficiency. By precisely controlling the degree of hydrolysis, solution form, and addition method of polyvinyl alcohol, these products can significantly improve the porosity/bulk density relationship of PVC, simplify the stripping process, and ultimately enhance the thermal stability and processing performance of the product. Manufacturers can select the most suitable secondary suspending agent from this series based on their own equipment conditions, the required PVC molecular weight range, and sensitivity to methanol/isopropanol content.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    Read More
  • What Are the Advantages of Modified Polyvinyl Alcohol Over Standard PVA?
    Sep 23, 2025
    Polyvinyl alcohol (PVA), a water-soluble synthetic polymer, is widely used in textiles, papermaking, construction, coatings, and other fields due to its excellent film-forming, adhesive, emulsifiable, and biodegradable properties. However, standard PVA may have performance limitations (such as water resistance, flexibility, and redispersibility) in certain specific applications. To overcome these challenges, scientists have developed a series of modified PVAs by introducing various functional groups or modifying the polymerization process. Compared to standard PVA, these modified PVA exhibit significant performance advantages in many aspects. 1. Better Water Resistance and Stickiness The abundance of hydroxyl groups (-OH) in the standard PVA molecular chain makes it extremely hydrophilic. However, this also means that it is prone to swelling and even dissolution in hot and humid environments, resulting in reduced bond strength. Modified PVA, by introducing hydrophobic functional groups (such as acetyl and siloxane groups) or through crosslinking reactions (such as boric acid crosslinking and aldehyde crosslinking), can effectively reduce its swelling in water, significantly improving its water resistance. For example, in dry-mix mortars for construction, modified PVA used in tile adhesives can form a more stable and moisture-resistant bond, ensuring that tiles will not fall off due to moisture erosion during long-term use. These modifications also enhance the cohesion between PVA molecular chains, strengthening its adhesion to various substrates (such as cellulose and inorganic powders), thereby imparting higher cohesive and adhesive strength to the final product.   2. Optimized Redispersibility and Compatibility Certain applications, such as the production of redispersible polymer powders (RDPs), place stringent requirements on the redispersibility of the polymer. Standard PVA, used as a protective colloid, can easily cause emulsion particles to agglomerate during the spray drying process, affecting the final properties of the RDP. Modified PVA, such as partially alcoholyzed PVA with a high degree of polymerization, produced through specialized polymerization processes, or PVA containing specific hydrophilic/hydrophobic segments, can more effectively stabilize emulsion systems. The protective layer they form after drying allows for rapid and uniform redispersion upon re-addition of water, even after prolonged storage, restoring the original emulsion state. This optimized redispersibility is crucial for ensuring the workability of products such as dry-mix mortar and putty powder. Furthermore, the introduction of specific functional groups into modified PVA can improve its compatibility with certain additives (such as cellulose ethers and starch ethers), reducing system interactions and flocculation, thereby achieving synergistic effects within the formulation and achieving more stable and efficient product performance.   3. Broader Application Potential and Customizable Performance While standard PVA has relatively fixed properties, the customizability of modified PVA opens up a wider range of applications. Through precise chemical modification, PVA can be endowed with a variety of customized properties to meet the stringent requirements of specific industries. For example, silane-modified PVA can significantly improve its adhesion and alkali resistance in cementitious materials; vinyl acetate-modified PVA offers enhanced flexibility and lower film-forming temperatures; and certain bio-modified PVAs may find new applications in the biomedical field. This ability to be "functionalized" to meet specific needs elevates modified PVA from simply a basic raw material to a high-performance additive capable of solving specific technical challenges.   In summary, while standard PVA remains indispensable in many fields, modified PVA, with its significant advantages in water resistance, adhesive strength, redispersibility, and customizability, has achieved a leap from "general purpose" to "specialized," and from "passive" to "intelligent." Whether pushing the performance limits of traditional applications or pioneering cutting-edge technologies such as biomedicine, environmental engineering, and smart materials, modified PVA (such as PVOH 552) demonstrates immense potential and is undoubtedly a key direction for the future development of polymer materials.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
leave a message

home

products

WhatsApp

Contact Us