Blog

Home

Blog

  • Discussion on the production process of domestic chloroprene rubber
    Jul 11, 2025
    Chloroprene rubber (CR) is an important variety of synthetic rubber. It stands up well to light, aging, flexing, acids, bases, ozone, flames, heat, and oil. It also has good physical and electrical properties. Its comprehensive performance is unmatched by natural rubber and other synthetic rubbers. It is widely used in defense, transportation, construction, light industry and military industry. Chloroprene rubber has several uses. It's a key element in making auto parts, machinery, industrial items, and adhesives. You'll also find it in construction materials, coated fabrics, and wire and cable insulation. By itself, chloroprene rubber is used to create rubber harness clips and shock absorbers for cars and farm equipment. Initially, chloroprene rubber from Japan's DENKA and Japan's Toyo Soda was used. Later, due to the increase in raw material prices and the restrictions of the procurement cycle, a series of research and development work on the replacement of imported chloroprene rubber with domestic chloroprene rubber was carried out. Finally, the replacement goal was successfully achieved, and some process and formula problems of domestic chloroprene rubber in the use process were solved.   1. Neoprene rubber model Imported neoprene rubber model: Denka M120 Chloroprene Rubber, a product of Japan DENKA, light-colored blocks; B-10, a product of Japan Toyo Soda, light-colored blocks. Domestic neoprene rubber model: CR3221, a product of Chongqing Changshou Chemical Co., Ltd. Polychloroprene Rubber CR3221 is a chloroprene polymer with sulfur and diisopropyl xanthate disulfide as mixed regulators, with a low crystallization rate, a relative density of 1.23, beige or brown blocks, and a non-polluting type.   2. Production process performance comparison Imported neoprene handles better during production. For example, the raw rubber pieces do not stick together, even after baking, which makes them easy to measure. The process is smooth; it does not stick to the roller, so removing it is simple. The semi-finished film is stiff and holds its shape well. Domestic neoprene does not perform as well. The rubber pieces tend to stick, especially after baking. The rubber also sticks to the roller, which makes removal hard, and the semi-finished film sticks easily and loses its shape. Despite these things, domestic neoprene has some benefits. It mixes powder faster and with less effort in both internal and open mixers. Rubber from Japan is harder to mix. In the open mixer, M-120 can even fall off the roller at first. The internal mixer requires more effort and time, especially in the winter. Domestic mixed rubber still works well after being stored for a long time. Rubber from Japan, especially M-120, gets hard and loses its flexibility after two to four weeks. Tests show that production methods that work for imported neoprene do not work well for domestic neoprene. The original method needs some changes. If not, it will be hard to make it work for production, even when the physical and mechanical qualities meet the standards.   3.  Conclusion Compared with Japanese chloroprene rubber, domestic chloroprene rubber CR3221 has lower Mooney viscosity and greater viscosity, which is more favorable for mixing and powder consumption, and can significantly reduce the operation time, but the processability is poor and the operation is difficult. If the temperature is not well controlled, the operation is improper or the rubber is over-mixed, it may cause the roller to stick or even fail to unload normally. By selecting the correct process conditions and methods and adjusting the formula appropriately, it can fully meet the production needs.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • How is the aging resistance of chloroprene rubber timing belt?
    Jul 08, 2025
    Chloroprene rubber (CR), a synthetic material, is a common choice for making timing belts because of its good physical and chemical traits. Neoprene timing belts resist aging well and work best in regular transmission systems, but some situations might need different materials. 1. Aging resistance of chloroprene rubber timing belts Neoprene resists oxidation well, helping timing belts stay flexible and strong during regular use. This prevents the material from getting fragile or breaking down due to oxidation, making it good for machines exposed to air for extended periods, as it reduces the possibility of cracks or surface hardening. Heat resistance: The operating temperature range is generally between -20°C and 100°C, and it can operate for a long time in a medium-high temperature environment; under high temperature conditions, although its performance will decrease slightly, the aging process can be delayed by adding heat-resistant agents. Anti-ultraviolet performance: Neoprene has moderate anti-ultraviolet ability, but the surface may oxidize under long-term exposure to strong light, resulting in color changes and the formation of tiny cracks. Moisture resistance: Neoprene has good resistance to moisture and is suitable for high humidity environments. It is not easy to deteriorate due to moisture intrusion. Chemical corrosion resistance(Chloroprene Rubber SN-236T): It has good corrosion resistance to grease, weak acid, alkali and some chemical solvents, which slows down the aging rate, but is not suitable for contact with strong oxidizing chemicals.   2. Applicable scenarios of chloroprene rubber timing belts Industrial transmission equipment(Chloroprene Rubber SN-244X): Applicable to power transmission of conventional mechanical equipment, such as textile machinery, packaging equipment and general processing equipment. Medium temperature environment: It performs well in medium and high temperature (below 100°C) application scenarios, such as industrial drying equipment or HVAC systems. Indoor environment: Equipment with low requirements for UV resistance, such as indoor automation equipment or low maintenance systems. Medium humidity and chemical environment: It can be applied to equipment that contacts oils and weak acid and alkali environments, such as food processing machinery and light chemical equipment.   3. Limitations of aging resistance of chloroprene rubber timing belt Prolonged exposure to temperatures above 100°C can speed up the aging process, leading to reduced flexibility or hardening of the timing belt. When working in such conditions, fluororubber or silicone rubber belts are the preferred choice. Extended exposure to strong sunlight can cause surface oxidation and cracking, which reduces the lifespan of the belt. Polyurethane belts or those with anti-UV coatings are advisable for outdoor setups. Strong acids, bases, or concentrated chemical solvents can cause corrosion if the material isn't resistant enough.   4. Methods to extend the aging resistance of chloroprene rubber timing belts Reasonable storage: Store in a dry, ventilated, light-proof environment to avoid ultraviolet radiation and high temperature. Regular inspection: Regularly check whether there are cracks or hardening on the surface of the timing belt during use, and remove oil and chemical residues in time. Adding antioxidants: By adding antioxidants or anti-ultraviolet ingredients during the manufacturing process, the aging resistance of the timing belt can be significantly improved. Optimize working conditions: Avoid running the synchronous belt under excessive tension or extreme temperature to reduce the risk of aging.   Chloroprene rubber synchronous belts resist oxidation, heat, and moisture well, so they age slowly and work for many standard jobs. Still, they might not work as well when it's very hot, there's a lot of ultraviolet light, or things are very corrosive. You can make these belts last longer by storing and using them properly and keeping up with regular maintenance. Because of this, they're a solid, affordable choice.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    Read More
  • LANXESS Baypren Neoprene Complete Guide
    Jul 03, 2025
    1. Research and development of chloroprene rubber Chloroprene rubber & Neoprene latex is famous for its weather resistance, excellent physical properties, chemical resistance and oil resistance. Therefore, chloroprene rubber is widely used in rubber accessories that are exposed to the air and require oil resistance and high mechanical properties, such as: hoses, conveyor belts, transmission belts, cable sheaths, dust covers, shock pads, air capsules and other rubber products that require weather resistance, oil resistance, high physical properties and good flexural properties. The trade name of LANXESS chloroprene rubber is Baypren, which is translated into Bayer Ping in Chinese. It evolved from the original Perbunan C of Bayer Company and was produced in the Dormagen factory in Germany. 2. Trade names and naming principles of LANXESS chloroprene rubber Trade names of LANXESS chloroprene rubber LANXESS chloroprene rubber has a variety of brands to meet the needs of different products and different application environments. For specific brands, please refer to the LANXESS rubber product brand table. The main varieties of Lanxess nylon-butadiene rubber currently sold in China are: Baypren126 is a molded grade, which is resistant to high and low temperatures, has good physical and mechanical properties, excellent process, and does not burn or stick to rollers. Baypren 116 has a lower Mooney viscosity than Bapren126, and the rubber compound has good fluidity. It is a grade for extruded products, with stable extruded dimensions, smooth surface, and high efficiency. Baypren711 is a vulcanization-adjustable grade, used for adhesive tapes. It has a high sulfur content, good processability of the rubber compound, good adhesion to reinforcing materials, and is wear-resistant. Baypren 210 is a universal brand. It has excellent comprehensive performance and meets the processing requirements of different processes and products. The price is relatively low. Baypren 230 (SN-238) is an extra-high Mooney grade with high mechanical strength. It is suitable for high strength and blending with other grades to achieve special product performance and process requirements. Baypren 114 is a pre-crosslinked grade. It is suitable for extruding high-performance thin-walled and precise-size products, and the extruded products are resistant to collapse. Such as continuous vulcanization production of automotive wiper strips and other products and processes. Naming principles of LANXESS chloroprene rubber LANXESS chloroprene rubber consists of a product name plus a 3-digit number. The product name is: Baypren, which is translated as Bayer Ping. The brand name is represented by a 3-digit number, and Baypren 126 is used as an example as follows: The first digit indicates the crystallization tendency, 1 slight/2 medium/3 strong crystallization (general brand); sulfur content, 5 low sulfur/6 medium/7 high sulfur (sulfur-adjusted brand). The second digit indicates the Mooney viscosity: 1 low Mooney/2 medium/3 high Mooney. The third digit indicates special properties: 4 pre-crosslinking; 5 pre-crosslinking plus xanthogenic acid disulfide adjustment; 6 xanthogenic acid disulfide adjustment. The third digits 1 and 2 indicate the Mooney viscosity of the raw rubber and the tendency to form products. For example, the crystallinity of Baypren 111 is extremely low, while the crystallinity of Baypren 112 is low to moderate.   3. Future Development 1)The high-tech development of automobile products and the strengthening of safety, hygiene and environmental protection concepts have caused fundamental changes in rubber materials. Many general-purpose products will inevitably be replaced by special brands to adapt to their special properties.  2) Modern rubber equipment is becoming more and more advanced and efficient, forcing the manufacturing process to be more and more perfect. Many product processes have consciously or unconsciously shifted from the original molding method to the injection method. This has led to an increase in demand for rubber compounds with good performance, long scorch time, and non-stick rollers. More attention is paid to injection rubber compounds with good fluidity. Lanxess's special Mooney rubber compound (Mooney can reach as low as 28 Mooney) chloroprene rubber brand was developed for this purpose. 3) The development of high-precision and cutting-edge technology requires many products with extremely high physical properties and low temperature resistance. In this regard, LANXESS already has a variety of special-functional chloroprene rubber grades available for selection, which need to be developed and utilized in combination with their functional requirements during product design and development, and explore newer and more scientific uses.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Glove Confusion? Here’s Your Guide
    Jun 30, 2025
    Gloves are the most commonly used protective tools in the laboratory besides goggles. There are many types of gloves, and different gloves have different uses.     1. Natural rubber (latex) Latex gloves, made from natural rubber, typically lack a lining and are available in both clean and sterile versions. These gloves can provide effective protection against alkalis, alcohols, and a variety of chemical dilution aqueous solutions, and can better prevent corrosion from aldehydes and ketones.   2. Polyvinyl chloride (PVC) gloves The gloves do not contain allergens, are powder-free, have low dust generation, low ion content, strong chemical corrosion resistance, can protect almost all chemical hazardous substances, and also have anti-static properties. Thickened and treated surfaces (such as fleece surfaces) can also prevent general mechanical wear, and thickened types can also prevent cold, with an operating temperature of -4℃ to 66℃. Can be used in a dust-free environment. PVC gloves grading standards: Grade A products, no holes on the surface of the gloves (PVC gloves with powder), uniform powder, no obvious powder, transparent milky white color, no obvious ink spots, no impurities, and the size and physical properties of each part meet customer requirements. Grade B products, slight stains, 3 small black spots (1mm≤diameter≤2mm), or a large number of small black spots (diameter≤1mm) (diameter>5), deformation, impurities (diameter≤1mm), slightly yellow color, serious nail marks, cracks, and the size and physical properties of each part do not meet the requirements.   3. PE gloves PE gloves are disposable gloves made of polyethylene. These gloves are waterproof, oil-proof, anti-bacterial, and resistant to acids and bases. Note: PE gloves are safe to use with food and are non-toxic. It is better to keep PVC gloves away from food, especially if it's hot.     4. Nitrile rubber gloves Nitrile rubber gloves are usually divided into disposable gloves, medium-duty unlined gloves and light-duty lined gloves. These gloves can prevent erosion by grease (including animal fat), xylene, polyethylene and aliphatic solvents; they can also prevent most pesticide formulations and are often used in the use of biological components and other chemicals. Nitrile rubber gloves do not contain protein, amino compounds and other harmful substances, and rarely cause allergies. They are silicone-free and have certain antistatic properties, which are suitable for the production needs of the electronics industry. They have low surface chemical residues, low ion content and small particle content, and are suitable for strict clean room environments.   5. Neoprene gloves Similar to the comfort of natural rubber, neoprene gloves are resistant to light, aging, flexing, acid and alkali, ozone, combustion, heat and oil.   6. Butyl rubber gloves Butyl rubber is only used as a material for medium-sized unlined gloves and can be used for operations in glove boxes, anaerobic boxes, incubators, and operating boxes; it has super durability against fluoric acid, aqua regia, nitric acid, strong acids, strong alkalis, toluene, alcohol, etc., and is a special rubber synthetic resistant liquid gloves.   7. Polyvinyl alcohol (PVA) gloves Polyvinyl alcohol (PVA) can be used as a material for medium-sized lined gloves, so this type of gloves can provide a high level of protection and corrosion resistance against a variety of organic chemicals, such as aliphatic, aromatic hydrocarbons, chlorinated solvents, fluorocarbons and most ketones (except acetone), esters and ethers.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Performance Evaluation of Domestic CR Rubber Linings
    Jun 27, 2025
    CR modified materials are really popular these days.  A company called Shanghai Shuangpu Rubber Anti-Corrosion Lining Co., Ltd. has rolled out a bunch of different rubber linings, like CR, CR/NR, and NBR/CR. These products are proving to be quite useful across various sectors, including chemicals, electricity, steel, mining, and water treatment. You can see more about this in Figure 1.   Interestingly, Shanghai Shuangpu Rubber Anti-Corrosion Lining Co., Ltd. has done some side-by-side tests and discovered that certain fluoroprene rubbers made locally are performing on par with similar CR products that come from Japan and Germany. This is great news for the local industry, as it shows that we’re capable of producing high-quality materials that can stand shoulder to shoulder with the best from around the world. So, whether it’s keeping things from rusting or just making tough parts for machines, these rubber linings are definitely pulling their weight in various industries.   However, there are still few varieties of domestically produced fluoroprene rubbers, and there is no low-hardness fluoroprene rubber material. The existing main varieties, such as Chloroprene Rubber CR121, Chloroprene Rubber CR232, etc., are made of fluoroprene lining rubber sheets that are relatively hard, and the pre-vulcanized rubber sheets produced are very hard, making the pasting construction difficult. Further tests show that adding a large amount of softener to the formula can reduce the hardness, but when it reaches a certain amount, it will significantly affect the bonding strength. The production test also shows that the bonding strength of the cold-adhesive adhesive produced by domestic Chloroprene Rubber CR244 is completely up to the level of foreign Denka A90 Chloroprene Rubber and Bayprene 213. However, after being applied to the steel plate and rubber plate, the bonding retention time of the adhesive coating is significantly lower than that of the adhesive made of Denka A90 Chloroprene Rubber and Bayprene 213, and it is more obviously affected by the ambient temperature and humidity, which increases the difficulty of rubber lining construction of large equipment and increases the quality risk. It can be seen that there is still a lot of room for research and improvement in the material variety and application characteristics of domestic fluoroprene.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    Read More
  • What is Neoprene Rubber? Properties & Applications
    Jun 25, 2025
    What is Neoprene? Neoprene, also known as polychloroprene, is a synthetic rubber made by the free radical polymerization of chloroprene and is used in a wide variety of applications. It was first introduced by DuPont and was used by the U.S. military during World War II the following decade. Although it is one of the earliest synthetic rubbers, it is still very popular today. Neoprene has a wide range of applications due to its strong physical properties, chemical resistance, and flame retardancy. Neoprene is typically molded by injection molding, transfer molding, or compression molding.     Properties of Neoprene Neoprene has many excellent properties that make it a widely used synthetic rubber. As with any polymer, there are some disadvantages to consider when considering using Neoprene for your application. Click here to learn more about how to choose the right type of rubber to manufacture your product.   Common Applications of Neoprene Neoprene is a very commonly used rubber polymer that has a wide range of uses. It is resistant to water, fire, ozone, sunlight, and many other chemicals, making it a very versatile material. These applications include refrigeration seals, Freon/air conditioning, engine mounts, engine coolant, oil and chemical tank linings, automotive gaskets and seals, and weather stripping.   Other examples of neoprene applications include: Water Sports(Chloroprene Rubber SN-242A). Neoprene is commonly used in wetsuits due to its waterproof and insulating properties. It is also used in a variety of equipment for scuba diving, fishing, surfing, boating, and other water sports. Everyday Use(Chloroprene Rubber SN-241). Neoprene is used in many household items we use every day, including mouse pads, smartphone cases, laptop bags, remote controls, dishwashing gloves, and even musical instruments. Face Masks(Chloroprene Rubber SN-243). During the COVID-19 pandemic, neoprene was found to be an effective material for making face masks. Since then, many manufacturers have used it to produce protective masks.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Why Butvar PVB Excels in Wire Enamels and Protective Coatings?
    Jun 18, 2025
    Polyvinyl Butyral Resin (PVB) resin has become a popular high-performance material in industrial applications due to its excellent adhesion, flexibility and chemical adjustability. Especially in the field of insulating paint and surface coating, its unique hydroxyl active group gives it excellent adhesion, cross-linking ability and compatibility with a variety of resins, which can not only meet the stringent electrical performance requirements, but also provide a strong and durable protective coating. Whether as an insulating coating for electromagnetic wires or as a key component of multifunctional surface coatings, Butvar PVB has demonstrated its cross-domain adaptability and established its long-term leading position in the industry.   Wire enamels Butvar resins ( Butvar B-98 & PVB WWW-A-20) may be used to overcoat magnet wire so that coils made from that wire can be cemented with heat or by solvent activation. Magnet wire that is coiled or formed, featuring a polyvinyl butyral coating, exhibits significant durability and flexibility. The hydroxyl functional groups within the polyvinyl butyral structure enable it to not only form crosslinks with itself but also to engage in cross-curing with phenolic or isocyanate resins. The comprehensive equilibrium of both physical and chemical characteristics has established Butvar-based overcoats as a predominant choice in the industry for an extended period.     Surface coatings Butvar resin (Butvar B-76 &  PVB WWW-A-30) can be utilized either independently or in conjunction with various resins to create effective surface coating formulations. Films which may be air dried, baked, or cured at room temperature are obtained by proper compounding. The incorporation of hydroxyl groups within the polymer structure not only facilitates effective wetting of various substrates but also provides a reactive site for chemical interaction with thermosetting resins.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • The Chemistry Behind Butvar PVB: Crosslinking & Insolubilization Explained
    Jun 16, 2025
    Compatibility The compatibility of Butvar polyvinyl butyral resins (PVB) with various plasticizers, modifiers, and additional resins is extensively documented. Butvar is readily amenable to compounding with other additives to improve its physical and chemical characteristics. Plasticizers are frequently utilized to enhance flexibility across a wider temperature spectrum, as noted in Table 9.   Crosslinking agents, including Santolink phenolic and Resimene amino resins, are employed to provide superior toughness and thermal stability. The compatibility of Butvar polyvinyl butyral resins (Butvar B-98 &  PVB WWW-A-20) with other modifiers and resins is illustrated in Table 10.   Insolubilizing Reactions Numerous applications of vinyl acetal resins involve curing processes that utilize thermosetting resins to achieve the desired property balance. The free hydroxyl groups present in vinyl acetal resins serve as reactive sites for chemical interaction, allowing for the insolubilization of the resins. Generally, any chemical reagent or resinous material capable of reacting with secondary alcohols will interact with polyvinyl butyral (Butvar B-76 & WWW-A-30) to reduce its solubility. The characteristics of coatings can vary significantly depending on the type and quantity of crosslinking agents employed.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • How does anion-modified PVA redefine water-soluble films?
    Jun 13, 2025
    1 PVA (PVA 088-20 & PVA 1788) water resistance modification PVA (Polyvinyl alcohol) has very low air permeability and is a high-barrier packaging material with excellent performance. Because the molecular chain contains a large number of hydroxyl groups and has high hydrophilicity, these hydroxyl groups are easy to form hydrogen bonds with water molecules under high humidity, resulting in changes in the aggregate structure of PVA, causing its barrier properties to drop sharply. Therefore, necessary water resistance modification should be carried out on PVA to reduce the effect of humidity on the barrier properties of PVA. The mechanism of PVA water resistance modification is to cross-link PVA by adding a cross-linking agent, and completely or partially block the hydroxyl groups, which can reduce its hydrophilicity and achieve the purpose of improving water resistance. The 8511 Institute of the China Aerospace Corporation has developed a melamine resin modified liquid "868" that has no toxic side effects on the human body. "868" is a multifunctional polycondensate. When the amount added is not large, it can moderately cross-link with the hydroxyl groups in PVA, so that PVA forms a strong three-dimensional structure coating, which determines the air tightness of PVA under wet conditions and improves water resistance. This modified PVA coating liquid will not form a skin at room temperature, will not swell or fall off when in contact with water, and can be used for glue preparation and coating at room temperature.   2 PVA (PVA 100-27 & PVA 1799)water-soluble modification PVA's water solubility can be used to make water-soluble films. Water-soluble films are a new type of green and environmentally friendly packaging material, which is widely used in the packaging of various products in Europe, America, Japan and other countries. For example, pesticides, fertilizers, pigments, detergents, water treatment agents, concrete additives, detergents, chemical reagents for photography and chemical reagents for gardening care. Because the water solubility of pure PVA film cannot meet the requirement of dissolution time ≤ 300s in water at 20℃, Wen Huojiang et al. carried out Michael addition reaction with PVA and acrylamide, and then hydrolyzed and synthesized modified PVA under base catalysis. Water-soluble anionic groups were introduced into the PVA molecular chain to enhance the solubility. Water-soluble films were prepared using this as raw material, and the relationship between the amount of alkali, acrylamide and modification rate was discussed. The modification rate made a great contribution to the low-temperature rapid solubility of the prepared film within a certain range. The effect on water solubility beyond a certain range was not significant, but it would lead to excessively high costs.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Taxes are imposed when the degree of hydrolysis exceeds 80%? Technology and trade game in the US PVA anti-dumping case
    Jun 09, 2025
    The US International Trade Commission determined, in accordance with the Tariff Act of 1930, that the revocation of the anti-dumping duty order on certain Polyvinyl Alcohol (PVA) originating in China, Japan and South Korea imported into the United States may cause substantial damage to the US industry. In 2002, Celanese and DuPont launched anti-dumping investigations against the above countries. In 2003, the ITC decided that Japanese imports were a risk for injury, but they left out Germany. They also excluded China's Sichuan Weiye Company because it didn't meet the required standards at the time. On the other hand, they found that Shanghai Volkswagen was indeed dumping. In July and October 2003, the United States officially imposed anti-dumping duties on PVA from China, Japan and South Korea.     ITC clearly defined the "domestic similar products" of polyvinyl alcohol (PVA) in the review. According to the Tariff Act, similar products refer to products that are similar or most similar to the investigated goods in terms of characteristics and uses. The Ministry of Commerce has limited the scope of the investigation to PVA with a degree of hydrolysis exceeding 80%, while excluding 15 specific forms of PVA.   PVA is a water-soluble synthetic polymer in the form of white particles or powders, and its properties are mainly determined by the degree of hydrolysis, viscosity and molecular weight. In terms of production process, PVA is produced by hydrolysis of vinyl acetate monomers under the action of a catalyst after polymerization. In the USA, PVA is captively consumed or sold to end users primarily as an intermediate in the production of PVB, which is a plastic laminate used as an adhesive between panes of automotive safety glass or load-resistant architectural glass.  PVA is also sold to end users (and occasionally to distributors) for use in the textile and paper industries in sizing formulations(such as PVA 098-08 & PVA 1099); as a binder in adhesive and soil binding formulations(such as PVA 088-20 & PVA 1788); and as an emulsion or polymerization aid in colloidal suspensions, water-soluble films, cosmetics, and joint compounds (such as KURARAY POVAL 17-94).    Although different grades of PVA have differences in specific applications, the committee believes that all PVAs with a degree of hydrolysis exceeding 80% should be considered as the same type of product. This decision is based on three main points: first, all types of PVA share the same basic chemical makeup; second, different grades of PVA can be swapped for each other in many cases; and third, the way they are made and the materials used are pretty similar. It's important to note that while end users tend to stick to one specific grade of PVA to keep costs down, this habit doesn't change the fact that the product itself is quite uniform.   In this review, the Commission stuck with the product definition from the original investigation for two reasons: major manufacturers like Celanese and DuPont agreed with it, and the market hasn’t changed much since then. This decision also continues the Commission's position in the original investigation, that is, not to classify PVB-grade PVA into different product categories.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Innovative Adhesive Technology: How is VAE revolutionizing the paper, woodworking, textile and tobacco industries?
    Jun 06, 2025
      1.Glue for paper packaging and cardboard: efficient bonding, environmentally friendly and safe VAE adhesives suitable for cardboard packaging, film-sheet lamination, paper tube/honeycomb sponge molding, as well as envelope making and book binding. This product line has some great technical benefits. It offers strong bonding and good heat resistance for different materials, including engineering plastics like PET and PS. Plus, it cures quickly, which can help boost production efficiency. Its formula system combines diversity and safety. It not only meets the regulatory requirements of food contact materials, but also has excellent spraying suitability, ensuring stable and uniform sizing effects during high-speed production, while keeping the equipment clean and reducing maintenance frequency. Recommended products: VINNAPAS EP 706K, EP 707K; VINNAPAS EAF 67, EAF 68     2. Woodworking glue: high strength, low formaldehyde VAE adhesives are really flexible when it comes to wood processing. They are great for things like furniture, wood floors, plywood, and doors and windows.This adhesive has excellent water resistance and heat resistance, fast curing speed, and adopts innovative DPX technology to achieve a hardener-free formula. At the same time, the formaldehyde content is controlled below 5ppm, effectively solving the yellowing problem. Its excellent overall performance is particularly suitable for impregnated paper or PVC veneer. In addition, VAE adhesives can ensure that the surface of the product reaches a very high degree of flatness, and support the addition of medium to high proportions of PUD (polyurethane dispersion), providing professional and efficient bonding solutions for various wood processing needs. Recommended products: EP 706K, EP 707K, VINNAPAS EP 645     3. Textile laminating adhesive: strong and water-resistant, cost-optimized The application of VAE adhesives in the textile industry covers the efficient lamination of cloth and sponge, artificial leather and PVC veneer, providing a variety of product options, covering a wide range of needs from high viscosity to low viscosity, and can provide high solid content formulas. Its excellent water resistance and excellent wet peel strength ensure a strong and lasting bonding effect.Plus, they require less thickening agent, plasticizer, and solvent, which means you can save on costs. Most importantly, VAE has excellent compatibility with materials such as natural latex, acrylic emulsion, polyurethane emulsion and styrene-butadiene latex, making it more cost-effective in various applications. Recommended products: EP 706K, VINNAPAS EP 708, EP 645     4. Tobacco glue: high-speed production, ultra-low residue VAE emulsions are really useful in the tobacco industry, especially for various types of adhesives like cigarette glues (including overlapping, nozzle, and packaging glues) and special adhesives for fast packaging machines. One of their main benefits is that they have very low levels of formaldehyde (less than 15 ppm) and residual vinyl acetate (under 100 ppm), which meets strict health and safety rules. There’s a full range of formulas available, from low to high viscosity, and they offer options with high solid content to suit different production needs. Recommended products: VINNAPAS EP 710, VINNAPAS 756   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • VINNAPAS VAE Dispersions: High-Performance Solutions
    Jun 03, 2025
    WACKER makes VINNAPAS VAE dispersions, which are polymer binders made from vinyl acetate-ethylene (VAE) copolymers. These binders help make many products work better and be more eco-friendly. WACKER is the top producer of VAE dispersions and redispersible polymer powders. You can find their products in lots of areas like coatings, tile adhesives, exterior thermal insulation systems, self-leveling screeds, interior plasters, paper coatings, and adhesives. What are VAE Copolymer Dispersions? These copolymers are created by mixing vinyl acetate, a hard monomer, with ethylene, a soft monomer, through emulsion polymerization. The ethylene adds flexibility to the VAE dispersions, so they don’t need extra plasticizers.   Great Rheological Properties VINNAPAS dispersions that use polyvinyl alcohol (PVOH) are easy to work with for many adhesive tasks, like paper and packaging (VINNAPAS 706 & VINNAPAS 710) . They’re good for different application methods too, such as roller and spray coating(VINNAPAS EP 705 A).   Reduced Migration The special makeup of the copolymer means that we don't need plasticizers or film-forming agents in products with VAE dispersions. This opens up many options for making low-migration adhesives.   Improved Workability Dispersions made with surfactants usually have better shear-thinning properties compared to those made with polyvinyl alcohol. This leads to better sticking to plastics, clearer films, more water resistance, and easier spraying, which makes it easier to work with floor adhesives. Plus, they can handle more fillers.   APEO Removal When making dispersions for adhesives, we don't need to use surfactants with APEOs (alkylphenol ethoxylates). So, VINNAPAS dispersions meet tougher environmental standards (such as VINNAPAS EP 7000).   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
1 2 3 4 5 6 7 8 9 10 14 15
A total of15pages
leave a message

home

products

WhatsApp

Contact Us