VAE CW40-705

Home

VAE CW40-705

  • Special VAE Emulsions for Waterproof Building Coatings: DiverSol 777 and 779P
    Dec 04, 2025
    In the field of building waterproofing, polymer cement waterproof coatings have always been a market favorite due to their environmental friendliness, high film strength, and good compatibility with damp substrates. As the core raw material of JS coatings, the performance of the polymer emulsion directly determines the success or failure of the final waterproof layer. Today, we will delve into DiverSol 779P (VAE CW40-705) and DiverSol 777 (VAE CW40-705). By interpreting the data of these two products, which conform to GB/T 23445-2009 Type II standard, we will analyze the key technical aspects of high-performance waterproof emulsions in practical applications.   1. Technical Characteristics and Performance Highlights of Two Special VAE Emulsion Both DiverSol 777 and 779P are plasticizer-free VAE Emulsion (Vinyl Acetate–ethylene Copolymer Emulsion) , presenting as a milky white water-based system. They maintain relatively consistent key indicators such as solid content, viscosity, pH, and glass transition temperature (Tg), which helps to maintain stable performance in different application scenarios.     ♠ Industry Significance in Performance: Low Tg for Flexibility: Suitable for Type II waterproof coatings requiring low-temperature flexibility and crack resistance; the film exhibits good elongation after drying, adapting to slight substrate displacement and temperature changes. Excellent Compatibility with Cement Systems: The PVA protective colloid improves the dispersibility of the emulsion when mixed with cement and fillers; significantly improves the sag resistance and thixotropic properties of cement paste. Plasticizer-Free Formulation: Reduces VOC emissions and enhances environmental friendliness; more stable in the formulation, preventing performance degradation due to migration. Adaptability to Wet Environments: Forms a film on damp, cold substrates without chalking or early cracking.   2. Application Logic and Formulation Synergy in Waterproof Building Coatings 2.1 Mechanism of Action in Waterproof Coating Systems ♣ VAE emulsions play three roles in cement-based waterproof coatings: Providing flexibility: filling the "brittleness gap" of the cement system; Improving water resistance: forming a continuous polymer film in the pores after cement hydration; Promoting workability: improving thixotropy, reducing sagging, and improving the smoothness of application.   The low Tg characteristics of DiverSol 777 and 779P enable the polymer phase to form a continuous film structure at room temperature or even low temperature, thereby effectively improving the coating density. It forms an interpenetrating network (IPN) structure with the cement hydrate, enhancing adhesion and crack resistance, which are fundamental properties that Type II waterproof coatings must meet.   2.2 Key Performance Improvement Points in Waterproofing Systems (1) Improved Flexibility and Crack Resistance The addition rate of the emulsion is usually 10–20% of the total mass of the system. The DiverSol series can achieve the following within this range: Increased tensile strength Increased elongation Buffering ability for mortar shrinkage cracks (2) Anti-sagging and workability 779P emphasizes "good anti-sagging performance" in its description. Its thixotropy is suitable for: Facade construction Multi-corner structures such as bathrooms Stability control of thick coating operations (3) Durability and water resistance The polyvinyl alcohol protective colloid system after film formation can make the emulsion evenly distributed in the cement pores: Reduce water absorption Improve freeze-thaw cycle stability Delay the alkaline erosion of cement paste (4) Strong substrate adaptability Both emulsions can be applied under "low temperature or high humidity conditions", especially suitable for: Rainy season construction areas Underground structures Brick and concrete building bases that are prone to dampness   3. Engineering value, storage and transportation and production operation points   3.1 Engineering value manifestation In building engineering applications, waterproofing systems usually face challenges such as diverse substrates, complex construction environments and high durability requirements. The selection of a suitable VAE emulsion not only affects product test indicators but also long-term operational stability. The value of DiverSol 777 and 779P to engineering projects is mainly reflected in: (1) Improved overall construction efficiency Good thixotropy, easier application, and reduced rework Strong adaptability to wet substrates, eliminating the need for prolonged drying of the substrate (2) Effectively extends the service life of the waterproofing system The continuous polymer phase reduces the path of moisture intrusion Strong crack resistance, especially suitable for areas with slight structural movement, such as bathroom corners and roof panel joints (3) Wide range of applications Waterproofing for bathrooms, kitchens, and balconies\Basement and foundation protection layers Roof coatings Flexible waterproofing primers for interior and exterior walls Premixed waterproofing slurry for engineering projects (4) Compliant with environmental trends Plasticizer-free, water-based, and low-residue, helping the product pass environmental building material certification or meet VOC requirements   3.2 Storage Specifications (1) Storage Environment and Shelf Life Temperature Control: The emulsion must be stored in a sheltered area and must not be frozen. Storage temperature should be strictly controlled between 5°C and 40°C. Once VAE emulsions freeze, they are usually irreversible after demulsification, resulting in direct economic losses. Shelf Life Management: Under suitable conditions and in their original, unopened packaging, DiverSol 779P and 777 have a minimum shelf life of 6 months. It is recommended that factories implement a "first-in, first-out" (FIFO) inventory management principle. (2) Pretreatment and Usage Precautions Filtration and Stirring: During transportation and storage, soft lumps or a skin may form on the surface of the emulsion, a common physical phenomenon in polymer dispersions. Therefore, filtration is strongly recommended before use. Especially if the product has been stored for a long time, thorough stirring is essential before use to ensure homogeneity. Preservative Treatment: Preservatives are added to the product at the factory to prevent microbial contamination. However, once the container is opened or transferred to another storage tank, the original preservative system may be insufficient to resist new microbial attacks. If the product cannot be used immediately, the user must take appropriate precautions (such as sealing for storage) or add a suitable preservative after transfer. (3) Safety Precautions Although the DiverSol series is considered safe for its intended use, as a chemical feedstock, it contains trace amounts of residual vinyl acetate monomer (controlled below 0.5%). Therefore, adequate ventilation should be maintained in the operating area. Operators should wear protective clothing, gloves, and goggles. In case of skin or eye splashes, rinse immediately with water.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Is Ethylene Vinyl Acetate(EVA) the same as Vinyl Acetate-Ethylene(VAE)
    Dec 30, 2019
    No, Ethylene Vinyl Acetate (EVA) is not the same as Vinyl Acetate-Ethylene (VAE,DA-310). While both EVA and VAE are copolymers of ethylene and vinyl acetate, they have different structures and properties.   EVA is a copolymer of ethylene and vinyl acetate, where the vinyl acetate content typically ranges from 5% to 50% by weight. It is a flexible, rubbery material commonly used in various applications such as footwear, packaging, and solar cell encapsulation due to its excellent flexibility, low-temperature toughness, and UV resistance. VAE, on the other hand, refers to a different type of copolymer formed by the polymerization of vinyl acetate and ethylene. In VAE, the vinyl acetate content is generally higher than in EVA, typically ranging from 10% to 60% by weight. VAE is often used as a binder or adhesive in construction materials such as paints, coatings, adhesives, and textiles.   So, while both EVA and VAE are copolymers of ethylene and vinyl acetate, they have different compositions and applications.
    Read More
  • What is VAE made of?
    Dec 26, 2019
    VAE stands for Vinyl Acetate Ethylene emulsion. It is a type of emulsion polymer made by the copolymerization of vinyl acetate (VA) and ethylene monomers. The resulting copolymer is dispersed in water to form an emulsion.   The composition of VAE emulsion ( DA-180L) typically consists of: 1. Vinyl Acetate (VA): This monomer, also known as vinyl ethanoate, provides the adhesive and film-forming properties to the emulsion. 2. Ethylene: Ethylene is a gaseous monomer that is copolymerized with vinyl acetate to improve the strength, flexibility, and resistance properties of the resulting polymer. 3. Emulsifiers: Emulsifiers are used to stabilize the emulsion and prevent the coagulation or separation of the polymer particles in water. They help in the formation of a stable, uniform emulsion. 4. Water: Water is the main component of the emulsion, serving as the dispersion medium for the polymer particles.   ElephChem VAE emulsion is commonly used in various applications such as adhesives, coatings, textiles, paper coatings, and construction materials. Its properties, such as good adhesion, flexibility, and water resistance, make it suitable for a wide range of applications.
    Read More
leave a message

home

products

WhatsApp

Contact Us