SKYPRENE G-40T

Home

SKYPRENE G-40T

  • Preparation of a new type of stabilizer for chloroprene rubber SN242
    Jul 14, 2025
    Chloroprene adhesive is popular in the shoemaking industry because it bonds materials very well. Among them, grafted chloroprene adhesive is the most widely used. As shoe materials develop towards lighter colors, the color requirements for adhesives are becoming more and more stringent. Right now, SN24 adhesive starts out light, but it yellows pretty fast after sitting around for a while, especially if it's in the sun. After being prepared into chloroprene adhesive, there is a yellowing problem, which leads to two problems: first, it affects the appearance of shoes. For light-colored shoes such as sports shoes and travel shoes, the problem is more prominent; second, the darkening of color is a manifestation of polymer aging, which leads to the deterioration of the bonding performance of the adhesive. Therefore, in order to improve the appearance of footwear and ensure that it does not turn yellow during wearing, a yellowing-resistant adhesive should be used.   1. Experimental materials Chloroprene rubber latex: Chloroprene Rubber SN-242, Sana Synthetic Rubber Co., Ltd.; toluene, methyl methacrylate, butanone, BPO, SKYPRENE G-40S; Denka A90 Chloroprene rubber   2. Performance test results 2.1 Comparison of glue solutions The different types of dry glue obtained by the drum were dissolved in toluene to obtain the glue solution comparison chart in Figure 1, and the comparison chart of different types of glue solutions after heating is shown in Figure 2.   As can be seen from Figure 1, the color of the glue solution in this experiment is not much different from the color of the same type of glue solution at home and abroad. After adding BPO and MMA and shaking well, the color will change.After being tested, SN242A became yellow. Domestic rubber samples No. 2 and No. 3 also turned yellow. The other samples got a bit darker, but our test rubber was still lighter than domestic rubber No. 4. Its color was close to that of samples No. 7 and No. 8.After 20 minutes in a 90℃ oven, rubber samples No. 1, 2, 3, and 5 turned yellow. Samples No. 4, 6, 7, and 8 got lighter. After an hour, the colors changed in the same way, but everything was darker than it was at 20 minutes.As you can see in Figures 1 and 2, when this test rubber was dissolved in toluene and heated with an initiator, it looked a little whiter than similar domestic glues. It looked about the same as similar foreign glues.   2.2 Grafting comparison According to the grafting formula, 0.1 parts of BPO and 50 parts of methyl methacrylate were added, and different types of chloroprene rubber were grafted. The viscosity of the solution before and after grafting was measured, as shown in Table 4. The comparison between the experimental glue and the domestic glue after grafting is shown in Figure 3.     Figure 3 presents a comparison between our experimental glue and a domestic glue following grafting.When exposed to free radicals, the unsaturated double bonds on the chloroprene rubber backbone transform the MMA monomer into a monomer free radical. This then grafts and copolymerizes with CR through a chain transfer reaction, creating a complex graft copolymer. This process leads to asymmetry and polarity in the adhesive structure, improving adhesion.   Based on the data in Table 5, our experimental glue shows a high grafting rate, nearly 100%. This solves the issue of low grafting rates seen with SN242, which stem from residual terminators. Plus, it eliminates the problem of red glue forming during the grafting process. Figure 3 is a comparison chart of the grafted glue solution after being placed in the sun for several days. The color of the experimental glue solution is much lighter than that of SN242.   2.3 GPC comparison According to Figure 4 and Table 5, the relative molecular weight and relative molecular weight distribution of the experimental glue are not much different from those of foreign glue. The average relative molecular weight is around 350,000, and the relative molecular weight distribution is below 2.3, which is larger than the relative molecular weight of domestic grafted glue, and the relative molecular weight distribution is narrow, and the regularity of the molecular chain is higher.     2.4 DSC comparison Based on the data in Figure 5 and Table 5, the experimental glue's glass transition temperature is similar to both domestic and foreign glues. The experimental glue's crystallization temperature, which is higher than the domestic glue, is nearly the same as the foreign glue.       3 Conclusion The chloroprene rubber adhesive developed in this paper has excellent yellowing resistance and stable grafting performance. Through DSC and GPC analysis, grafted chloroprene rubber with uniform relative molecular weight and high regularity was obtained, and its performance is comparable to that of the same type of foreign rubber.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Performance Evaluation of Domestic CR Rubber Linings
    Jun 27, 2025
    CR modified materials are really popular these days.  A company called Shanghai Shuangpu Rubber Anti-Corrosion Lining Co., Ltd. has rolled out a bunch of different rubber linings, like CR, CR/NR, and NBR/CR. These products are proving to be quite useful across various sectors, including chemicals, electricity, steel, mining, and water treatment. You can see more about this in Figure 1.   Interestingly, Shanghai Shuangpu Rubber Anti-Corrosion Lining Co., Ltd. has done some side-by-side tests and discovered that certain fluoroprene rubbers made locally are performing on par with similar CR products that come from Japan and Germany. This is great news for the local industry, as it shows that we’re capable of producing high-quality materials that can stand shoulder to shoulder with the best from around the world. So, whether it’s keeping things from rusting or just making tough parts for machines, these rubber linings are definitely pulling their weight in various industries.   However, there are still few varieties of domestically produced fluoroprene rubbers, and there is no low-hardness fluoroprene rubber material. The existing main varieties, such as Chloroprene Rubber CR121, Chloroprene Rubber CR232, etc., are made of fluoroprene lining rubber sheets that are relatively hard, and the pre-vulcanized rubber sheets produced are very hard, making the pasting construction difficult. Further tests show that adding a large amount of softener to the formula can reduce the hardness, but when it reaches a certain amount, it will significantly affect the bonding strength. The production test also shows that the bonding strength of the cold-adhesive adhesive produced by domestic Chloroprene Rubber CR244 is completely up to the level of foreign Denka A90 Chloroprene Rubber and Bayprene 213. However, after being applied to the steel plate and rubber plate, the bonding retention time of the adhesive coating is significantly lower than that of the adhesive made of Denka A90 Chloroprene Rubber and Bayprene 213, and it is more obviously affected by the ambient temperature and humidity, which increases the difficulty of rubber lining construction of large equipment and increases the quality risk. It can be seen that there is still a lot of room for research and improvement in the material variety and application characteristics of domestic fluoroprene.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    Read More
leave a message

home

products

WhatsApp

Contact Us