synthetic rubber producers

Home

synthetic rubber producers

  • Analysis of factors affecting the comprehensive performance of chloroprene rubber 2442
    Jul 22, 2025
    Chloroprene rubber (CR) is a synthetic rubber obtained by polymerization of chloroprene. It is widely used because of its excellent aging resistance, oil resistance, corrosion resistance and other properties. Polychloroprene Rubber CR2442 vulcanized rubber has good physical properties and can be used in many occasions (Such as chloroprene rubber adhesive). However, since the process of CR2442 in internal mixing, open mixing and vulcanization is not easy to master, the physical properties of the prepared vulcanized rubber are sometimes poor, which affects its production and application.   1. The influence of process parameters on the preparation of mixed rubber and vulcanized rubber 1.1 Internal mixer mixing process CR2442 has high requirements for the mixing process. When preparing CR2442 mixed rubber, the initial temperature, mixing time and rotor speed of the internal mixer have a great influence on the discharge temperature. The discharge temperature is an important parameter for measuring the mixing process. The optimal discharge temperature of CR2442 is 110℃. The order of adding various materials during the mixing process is also important. The correct way to add materials to CR2442 during the mixing process is: add CR2442 and small materials at the same time → add carbon black → add white carbon black and operating oil in sequence.   1.2 Mixing process of open mill After the mixed rubber prepared by the internal mixer is cooled, the vulcanization system is added on the open mill. The vulcanization system includes vulcanizing agent and accelerator. The correct way to add is to add accelerator first and then vulcanizing agent. When adding the vulcanization system to the mixed rubber on the open mill, it is generally required that there is accumulated rubber on the roller. With the shearing and extrusion of the open mill, the roller temperature will increase significantly. When the temperature of the rubber is too high, the rubber should be cut, pulled out and cooled, and then the rubber should be mixed after it is completely cooled.   1.3 Vulcanization process After adding the vulcanization system on the open mill, the rubber is cooled and placed for 16~24h before vulcanization. Since the CR2442 mixed rubber is easy to crystallize at low temperatures, it is generally necessary to perform indirect heating treatment in an oven. The vulcanization time of CR2442 was set to 30, 40, 50, 60, 70 and 80 minutes respectively. After many tests, it was found that the tensile strength and elongation at break of the vulcanized rubber were the largest when the vulcanization time was 60 minutes. Therefore, the optimal vulcanization time of CR2442 was determined to be 60 minutes.   1.4 Bonding operation In the process of bonding the mixed rubber and brass, the rubber is first cut into sheets with the same length and width as the mold. After the mold is preheated, the cut film is placed in the mold cavity. Since the mold is heated, placing it too slowly will cause early vulcanization of the rubber, reduce the fluidity of the rubber, make the bonding insufficient, and then reduce the bonding force. Therefore, the scorch time should be controlled to be much longer than the placement time of the film.   2. Influence of vulcanization system, reinforcement system and bonding system Vulcanization system: When CR2442 uses only zinc oxide and magnesium oxide for vulcanization, the resulting rubber's physical properties are worse compared to when zinc oxide, magnesium oxide, sulfur, and accelerator DM are used as a system. Reinforcement system: The reinforcement system of CR2442 is often based on carbon black and supplemented by white carbon black. Bonding system: Rubber as a single material can no longer meet the needs of society, and it is often necessary to bond rubber to metal to expand its scope of use. CR2442 is usually bonded to metal using a resorcinol-methylene-white carbon black-cobalt salt bonding system.   3. Conclusion When mixing, it's important to think about temperature, how long you mix, and how fast the rotor spins. Also, when you add the vulcanization system using the open mill, pay attention to the order you add things. The heat from the rollers can really change things.For vulcanization and bonding, if you make sure the scorch time is longer than it takes to place the sample, you can get better quality vulcanized rubber and better bonding with other types of materials. The CR2442 discharge temperature matters too. It's a good idea to add white carbon black as a reinforcement in CR2442. This helps control how fast vulcanization and bonding happen.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Preparation of a new type of stabilizer for chloroprene rubber SN242
    Jul 14, 2025
    Chloroprene adhesive is popular in the shoemaking industry because it bonds materials very well. Among them, grafted chloroprene adhesive is the most widely used. As shoe materials develop towards lighter colors, the color requirements for adhesives are becoming more and more stringent. Right now, SN24 adhesive starts out light, but it yellows pretty fast after sitting around for a while, especially if it's in the sun. After being prepared into chloroprene adhesive, there is a yellowing problem, which leads to two problems: first, it affects the appearance of shoes. For light-colored shoes such as sports shoes and travel shoes, the problem is more prominent; second, the darkening of color is a manifestation of polymer aging, which leads to the deterioration of the bonding performance of the adhesive. Therefore, in order to improve the appearance of footwear and ensure that it does not turn yellow during wearing, a yellowing-resistant adhesive should be used.   1. Experimental materials Chloroprene rubber latex: Chloroprene Rubber SN-242, Sana Synthetic Rubber Co., Ltd.; toluene, methyl methacrylate, butanone, BPO, SKYPRENE G-40S; Denka A90 Chloroprene rubber   2. Performance test results 2.1 Comparison of glue solutions The different types of dry glue obtained by the drum were dissolved in toluene to obtain the glue solution comparison chart in Figure 1, and the comparison chart of different types of glue solutions after heating is shown in Figure 2.   As can be seen from Figure 1, the color of the glue solution in this experiment is not much different from the color of the same type of glue solution at home and abroad. After adding BPO and MMA and shaking well, the color will change.After being tested, SN242A became yellow. Domestic rubber samples No. 2 and No. 3 also turned yellow. The other samples got a bit darker, but our test rubber was still lighter than domestic rubber No. 4. Its color was close to that of samples No. 7 and No. 8.After 20 minutes in a 90℃ oven, rubber samples No. 1, 2, 3, and 5 turned yellow. Samples No. 4, 6, 7, and 8 got lighter. After an hour, the colors changed in the same way, but everything was darker than it was at 20 minutes.As you can see in Figures 1 and 2, when this test rubber was dissolved in toluene and heated with an initiator, it looked a little whiter than similar domestic glues. It looked about the same as similar foreign glues.   2.2 Grafting comparison According to the grafting formula, 0.1 parts of BPO and 50 parts of methyl methacrylate were added, and different types of chloroprene rubber were grafted. The viscosity of the solution before and after grafting was measured, as shown in Table 4. The comparison between the experimental glue and the domestic glue after grafting is shown in Figure 3.     Figure 3 presents a comparison between our experimental glue and a domestic glue following grafting.When exposed to free radicals, the unsaturated double bonds on the chloroprene rubber backbone transform the MMA monomer into a monomer free radical. This then grafts and copolymerizes with CR through a chain transfer reaction, creating a complex graft copolymer. This process leads to asymmetry and polarity in the adhesive structure, improving adhesion.   Based on the data in Table 5, our experimental glue shows a high grafting rate, nearly 100%. This solves the issue of low grafting rates seen with SN242, which stem from residual terminators. Plus, it eliminates the problem of red glue forming during the grafting process. Figure 3 is a comparison chart of the grafted glue solution after being placed in the sun for several days. The color of the experimental glue solution is much lighter than that of SN242.   2.3 GPC comparison According to Figure 4 and Table 5, the relative molecular weight and relative molecular weight distribution of the experimental glue are not much different from those of foreign glue. The average relative molecular weight is around 350,000, and the relative molecular weight distribution is below 2.3, which is larger than the relative molecular weight of domestic grafted glue, and the relative molecular weight distribution is narrow, and the regularity of the molecular chain is higher.     2.4 DSC comparison Based on the data in Figure 5 and Table 5, the experimental glue's glass transition temperature is similar to both domestic and foreign glues. The experimental glue's crystallization temperature, which is higher than the domestic glue, is nearly the same as the foreign glue.       3 Conclusion The chloroprene rubber adhesive developed in this paper has excellent yellowing resistance and stable grafting performance. Through DSC and GPC analysis, grafted chloroprene rubber with uniform relative molecular weight and high regularity was obtained, and its performance is comparable to that of the same type of foreign rubber.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • What is Neoprene Rubber? Properties & Applications
    Jun 25, 2025
    What is Neoprene? Neoprene, also known as polychloroprene, is a synthetic rubber made by the free radical polymerization of chloroprene and is used in a wide variety of applications. It was first introduced by DuPont and was used by the U.S. military during World War II the following decade. Although it is one of the earliest synthetic rubbers, it is still very popular today. Neoprene has a wide range of applications due to its strong physical properties, chemical resistance, and flame retardancy. Neoprene is typically molded by injection molding, transfer molding, or compression molding.     Properties of Neoprene Neoprene has many excellent properties that make it a widely used synthetic rubber. As with any polymer, there are some disadvantages to consider when considering using Neoprene for your application. Click here to learn more about how to choose the right type of rubber to manufacture your product.   Common Applications of Neoprene Neoprene is a very commonly used rubber polymer that has a wide range of uses. It is resistant to water, fire, ozone, sunlight, and many other chemicals, making it a very versatile material. These applications include refrigeration seals, Freon/air conditioning, engine mounts, engine coolant, oil and chemical tank linings, automotive gaskets and seals, and weather stripping.   Other examples of neoprene applications include: Water Sports(Chloroprene Rubber SN-242A). Neoprene is commonly used in wetsuits due to its waterproof and insulating properties. It is also used in a variety of equipment for scuba diving, fishing, surfing, boating, and other water sports. Everyday Use(Chloroprene Rubber SN-241). Neoprene is used in many household items we use every day, including mouse pads, smartphone cases, laptop bags, remote controls, dishwashing gloves, and even musical instruments. Face Masks(Chloroprene Rubber SN-243). During the COVID-19 pandemic, neoprene was found to be an effective material for making face masks. Since then, many manufacturers have used it to produce protective masks.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
leave a message

home

products

WhatsApp

Contact Us