Denka A90 Chloroprene rubber

Home

Denka A90 Chloroprene rubber

  • Preparation of a new type of stabilizer for chloroprene rubber SN242
    Jul 14, 2025
    Chloroprene adhesive is popular in the shoemaking industry because it bonds materials very well. Among them, grafted chloroprene adhesive is the most widely used. As shoe materials develop towards lighter colors, the color requirements for adhesives are becoming more and more stringent. Right now, SN24 adhesive starts out light, but it yellows pretty fast after sitting around for a while, especially if it's in the sun. After being prepared into chloroprene adhesive, there is a yellowing problem, which leads to two problems: first, it affects the appearance of shoes. For light-colored shoes such as sports shoes and travel shoes, the problem is more prominent; second, the darkening of color is a manifestation of polymer aging, which leads to the deterioration of the bonding performance of the adhesive. Therefore, in order to improve the appearance of footwear and ensure that it does not turn yellow during wearing, a yellowing-resistant adhesive should be used.   1. Experimental materials Chloroprene rubber latex: Chloroprene Rubber SN-242, Sana Synthetic Rubber Co., Ltd.; toluene, methyl methacrylate, butanone, BPO, SKYPRENE G-40S; Denka A90 Chloroprene rubber   2. Performance test results 2.1 Comparison of glue solutions The different types of dry glue obtained by the drum were dissolved in toluene to obtain the glue solution comparison chart in Figure 1, and the comparison chart of different types of glue solutions after heating is shown in Figure 2.   As can be seen from Figure 1, the color of the glue solution in this experiment is not much different from the color of the same type of glue solution at home and abroad. After adding BPO and MMA and shaking well, the color will change.After being tested, SN242A became yellow. Domestic rubber samples No. 2 and No. 3 also turned yellow. The other samples got a bit darker, but our test rubber was still lighter than domestic rubber No. 4. Its color was close to that of samples No. 7 and No. 8.After 20 minutes in a 90℃ oven, rubber samples No. 1, 2, 3, and 5 turned yellow. Samples No. 4, 6, 7, and 8 got lighter. After an hour, the colors changed in the same way, but everything was darker than it was at 20 minutes.As you can see in Figures 1 and 2, when this test rubber was dissolved in toluene and heated with an initiator, it looked a little whiter than similar domestic glues. It looked about the same as similar foreign glues.   2.2 Grafting comparison According to the grafting formula, 0.1 parts of BPO and 50 parts of methyl methacrylate were added, and different types of chloroprene rubber were grafted. The viscosity of the solution before and after grafting was measured, as shown in Table 4. The comparison between the experimental glue and the domestic glue after grafting is shown in Figure 3.     Figure 3 presents a comparison between our experimental glue and a domestic glue following grafting.When exposed to free radicals, the unsaturated double bonds on the chloroprene rubber backbone transform the MMA monomer into a monomer free radical. This then grafts and copolymerizes with CR through a chain transfer reaction, creating a complex graft copolymer. This process leads to asymmetry and polarity in the adhesive structure, improving adhesion.   Based on the data in Table 5, our experimental glue shows a high grafting rate, nearly 100%. This solves the issue of low grafting rates seen with SN242, which stem from residual terminators. Plus, it eliminates the problem of red glue forming during the grafting process. Figure 3 is a comparison chart of the grafted glue solution after being placed in the sun for several days. The color of the experimental glue solution is much lighter than that of SN242.   2.3 GPC comparison According to Figure 4 and Table 5, the relative molecular weight and relative molecular weight distribution of the experimental glue are not much different from those of foreign glue. The average relative molecular weight is around 350,000, and the relative molecular weight distribution is below 2.3, which is larger than the relative molecular weight of domestic grafted glue, and the relative molecular weight distribution is narrow, and the regularity of the molecular chain is higher.     2.4 DSC comparison Based on the data in Figure 5 and Table 5, the experimental glue's glass transition temperature is similar to both domestic and foreign glues. The experimental glue's crystallization temperature, which is higher than the domestic glue, is nearly the same as the foreign glue.       3 Conclusion The chloroprene rubber adhesive developed in this paper has excellent yellowing resistance and stable grafting performance. Through DSC and GPC analysis, grafted chloroprene rubber with uniform relative molecular weight and high regularity was obtained, and its performance is comparable to that of the same type of foreign rubber.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • Discussion on the production process of domestic chloroprene rubber
    Jul 11, 2025
    Chloroprene rubber (CR) is an important variety of synthetic rubber. It stands up well to light, aging, flexing, acids, bases, ozone, flames, heat, and oil. It also has good physical and electrical properties. Its comprehensive performance is unmatched by natural rubber and other synthetic rubbers. It is widely used in defense, transportation, construction, light industry and military industry. Chloroprene rubber has several uses. It's a key element in making auto parts, machinery, industrial items, and adhesives. You'll also find it in construction materials, coated fabrics, and wire and cable insulation. By itself, chloroprene rubber is used to create rubber harness clips and shock absorbers for cars and farm equipment. Initially, chloroprene rubber from Japan's DENKA and Japan's Toyo Soda was used. Later, due to the increase in raw material prices and the restrictions of the procurement cycle, a series of research and development work on the replacement of imported chloroprene rubber with domestic chloroprene rubber was carried out. Finally, the replacement goal was successfully achieved, and some process and formula problems of domestic chloroprene rubber in the use process were solved.   1. Neoprene rubber model Imported neoprene rubber model: Denka M120 Chloroprene Rubber, a product of Japan DENKA, light-colored blocks; B-10, a product of Japan Toyo Soda, light-colored blocks. Domestic neoprene rubber model: CR3221, a product of Chongqing Changshou Chemical Co., Ltd. Polychloroprene Rubber CR3221 is a chloroprene polymer with sulfur and diisopropyl xanthate disulfide as mixed regulators, with a low crystallization rate, a relative density of 1.23, beige or brown blocks, and a non-polluting type.   2. Production process performance comparison Imported neoprene handles better during production. For example, the raw rubber pieces do not stick together, even after baking, which makes them easy to measure. The process is smooth; it does not stick to the roller, so removing it is simple. The semi-finished film is stiff and holds its shape well. Domestic neoprene does not perform as well. The rubber pieces tend to stick, especially after baking. The rubber also sticks to the roller, which makes removal hard, and the semi-finished film sticks easily and loses its shape. Despite these things, domestic neoprene has some benefits. It mixes powder faster and with less effort in both internal and open mixers. Rubber from Japan is harder to mix. In the open mixer, M-120 can even fall off the roller at first. The internal mixer requires more effort and time, especially in the winter. Domestic mixed rubber still works well after being stored for a long time. Rubber from Japan, especially M-120, gets hard and loses its flexibility after two to four weeks. Tests show that production methods that work for imported neoprene do not work well for domestic neoprene. The original method needs some changes. If not, it will be hard to make it work for production, even when the physical and mechanical qualities meet the standards.   3.  Conclusion Compared with Japanese chloroprene rubber, domestic chloroprene rubber CR3221 has lower Mooney viscosity and greater viscosity, which is more favorable for mixing and powder consumption, and can significantly reduce the operation time, but the processability is poor and the operation is difficult. If the temperature is not well controlled, the operation is improper or the rubber is over-mixed, it may cause the roller to stick or even fail to unload normally. By selecting the correct process conditions and methods and adjusting the formula appropriately, it can fully meet the production needs.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • How is the aging resistance of chloroprene rubber timing belt?
    Jul 08, 2025
    Chloroprene rubber (CR), a synthetic material, is a common choice for making timing belts because of its good physical and chemical traits. Neoprene timing belts resist aging well and work best in regular transmission systems, but some situations might need different materials. 1. Aging resistance of chloroprene rubber timing belts Neoprene resists oxidation well, helping timing belts stay flexible and strong during regular use. This prevents the material from getting fragile or breaking down due to oxidation, making it good for machines exposed to air for extended periods, as it reduces the possibility of cracks or surface hardening. Heat resistance: The operating temperature range is generally between -20°C and 100°C, and it can operate for a long time in a medium-high temperature environment; under high temperature conditions, although its performance will decrease slightly, the aging process can be delayed by adding heat-resistant agents. Anti-ultraviolet performance: Neoprene has moderate anti-ultraviolet ability, but the surface may oxidize under long-term exposure to strong light, resulting in color changes and the formation of tiny cracks. Moisture resistance: Neoprene has good resistance to moisture and is suitable for high humidity environments. It is not easy to deteriorate due to moisture intrusion. Chemical corrosion resistance(Chloroprene Rubber SN-236T): It has good corrosion resistance to grease, weak acid, alkali and some chemical solvents, which slows down the aging rate, but is not suitable for contact with strong oxidizing chemicals.   2. Applicable scenarios of chloroprene rubber timing belts Industrial transmission equipment(Chloroprene Rubber SN-244X): Applicable to power transmission of conventional mechanical equipment, such as textile machinery, packaging equipment and general processing equipment. Medium temperature environment: It performs well in medium and high temperature (below 100°C) application scenarios, such as industrial drying equipment or HVAC systems. Indoor environment: Equipment with low requirements for UV resistance, such as indoor automation equipment or low maintenance systems. Medium humidity and chemical environment: It can be applied to equipment that contacts oils and weak acid and alkali environments, such as food processing machinery and light chemical equipment.   3. Limitations of aging resistance of chloroprene rubber timing belt Prolonged exposure to temperatures above 100°C can speed up the aging process, leading to reduced flexibility or hardening of the timing belt. When working in such conditions, fluororubber or silicone rubber belts are the preferred choice. Extended exposure to strong sunlight can cause surface oxidation and cracking, which reduces the lifespan of the belt. Polyurethane belts or those with anti-UV coatings are advisable for outdoor setups. Strong acids, bases, or concentrated chemical solvents can cause corrosion if the material isn't resistant enough.   4. Methods to extend the aging resistance of chloroprene rubber timing belts Reasonable storage: Store in a dry, ventilated, light-proof environment to avoid ultraviolet radiation and high temperature. Regular inspection: Regularly check whether there are cracks or hardening on the surface of the timing belt during use, and remove oil and chemical residues in time. Adding antioxidants: By adding antioxidants or anti-ultraviolet ingredients during the manufacturing process, the aging resistance of the timing belt can be significantly improved. Optimize working conditions: Avoid running the synchronous belt under excessive tension or extreme temperature to reduce the risk of aging.   Chloroprene rubber synchronous belts resist oxidation, heat, and moisture well, so they age slowly and work for many standard jobs. Still, they might not work as well when it's very hot, there's a lot of ultraviolet light, or things are very corrosive. You can make these belts last longer by storing and using them properly and keeping up with regular maintenance. Because of this, they're a solid, affordable choice.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    Read More
  • Performance Evaluation of Domestic CR Rubber Linings
    Jun 27, 2025
    CR modified materials are really popular these days.  A company called Shanghai Shuangpu Rubber Anti-Corrosion Lining Co., Ltd. has rolled out a bunch of different rubber linings, like CR, CR/NR, and NBR/CR. These products are proving to be quite useful across various sectors, including chemicals, electricity, steel, mining, and water treatment. You can see more about this in Figure 1.   Interestingly, Shanghai Shuangpu Rubber Anti-Corrosion Lining Co., Ltd. has done some side-by-side tests and discovered that certain fluoroprene rubbers made locally are performing on par with similar CR products that come from Japan and Germany. This is great news for the local industry, as it shows that we’re capable of producing high-quality materials that can stand shoulder to shoulder with the best from around the world. So, whether it’s keeping things from rusting or just making tough parts for machines, these rubber linings are definitely pulling their weight in various industries.   However, there are still few varieties of domestically produced fluoroprene rubbers, and there is no low-hardness fluoroprene rubber material. The existing main varieties, such as Chloroprene Rubber CR121, Chloroprene Rubber CR232, etc., are made of fluoroprene lining rubber sheets that are relatively hard, and the pre-vulcanized rubber sheets produced are very hard, making the pasting construction difficult. Further tests show that adding a large amount of softener to the formula can reduce the hardness, but when it reaches a certain amount, it will significantly affect the bonding strength. The production test also shows that the bonding strength of the cold-adhesive adhesive produced by domestic Chloroprene Rubber CR244 is completely up to the level of foreign Denka A90 Chloroprene Rubber and Bayprene 213. However, after being applied to the steel plate and rubber plate, the bonding retention time of the adhesive coating is significantly lower than that of the adhesive made of Denka A90 Chloroprene Rubber and Bayprene 213, and it is more obviously affected by the ambient temperature and humidity, which increases the difficulty of rubber lining construction of large equipment and increases the quality risk. It can be seen that there is still a lot of room for research and improvement in the material variety and application characteristics of domestic fluoroprene.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    Read More
leave a message

home

products

WhatsApp

Contact Us