PVB For Photovoltaic Industry

Home

PVB For Photovoltaic Industry

  • Recycling of Polyvinyl Butyral resin
    Jan 29, 2025
    In recent years, with the accelerated pace of urbanization in my country and the continuous growth of automobile sales, there has been a strong demand for PVB laminated glass. At the same time, with the development of technology, Polyvinyl Butyral Resin (PVB) Film has been researched and developed, and the application market has been further developed. In this development process, we must not only pay attention to new technological innovation, but also overcome the technical difficulties in the process of PVB waste collection and recycling, so as to achieve the environmental friendliness and maximize the economic benefits of the PVB industry. At present, the recycling of PVB resin mainly includes physical recycling method, chemical recycling method and energy recovery method.     Physical recycling is to put the discarded PVB through a series of physical treatment processes, such as separation, purification, cleaning, etc., and at the same time, add certain additives as required for reuse. This method can effectively utilize PVB materials and greatly reduce environmental pollution. For example, the PVB solid waste and scraps discarded in the market are recycled, and after sorting, cleaning, drying, and crushing processes, plasticizers, tougheners, three-salt stabilizers and other additives are added, and waterproof membranes for construction are produced through high-speed mixing, mastication, tableting and other processes. Through experimental research, it has been found that the waterproof membrane has good mechanical properties, convenient processing, and a wide operating temperature range, and has broad market prospects in the construction field.   The chemical recycling method uses light, heat, radiation, and chemical reagents to degrade PVB polymer into low-molecular single or hydrocarbon substances. At the same time, the cracked raw materials can be reused. Common cracking methods include hydrolysis, alcoholysis, thermal cracking, hydrocracking, catalytic cracking, etc. However, the current technology of this deep chemical recovery method is not very mature, the technology cost is high, and the economic benefits are low. Currently, the most commonly used method is to process waste PVB to obtain pure polymer resins and additives. Supercritical separation technology is used to separate the additives and resin in colorless PVB.   Energy recovery is the process of extracting energy from waste plastic, typically used as fuel or to generate steam to generate electricity. Because PVB (PVB SD-4 & PVB B-03HX) polymer contains a large amount of hydrocarbons, it is flammable. Although the energy recovery method is one of the methods for recycling PVB waste, it is not commonly used due to its high cost.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    Read More
  • PVB Resin Market Status and Development Prospects
    Dec 15, 2024
    Polyvinyl butyral (PVB) is a highly versatile and widely used polymer in various industries. It finds extensive application in the automotive, architecture, and photovoltaic industries, among others.   In the automotive sector, PVB is used as an interlayer PVB films in laminated glass, providing enhanced safety and sound insulation. In the architectural field, PVB is utilized in safety glass, offering protection against impact, UV radiation, and break-ins. Additionally, the photovoltaic industry employs PVB as a critical component in solar cell encapsulation, ensuring durability and efficient energy conversion.     The PVB (PVB SD-5 & PVB B-04HX) market has witnessed substantial growth in recent years, driven by increasing demand for safety and energy-efficient solutions across industries. In the automotive sector, stringent safety regulations and rising consumer awareness have boosted the adoption of laminated glass, thereby driving the demand for PVB. Similarly, the growing emphasis on sustainable construction practices has fueled the demand for PVB in the architectural industry, where energy-efficient glazing solutions are sought after.   Moreover, the expanding solar energy sector has presented opportunities for PVB in photovoltaic applications. The advancements in solar cell technology and the shift towards renewable energy sources have increased the demand for PVB as a reliable encapsulation material.   The future of the PVB market looks promising, with several factors contributing to its growth. The increasing focus on safety and environmental sustainability will continue to drive demand for PVB in automotive and architectural applications. The growing urbanization and infrastructure development across regions also present significant opportunities for the PVB market.   Furthermore, advancements in PVB technology, such as the development of new formulations and improved performance characteristics, are expected to expand the scope of PVB applications. Manufacturers are investing in research and development to enhance the properties of PVB, including its optical clarity, adhesion, and resistance to yellowing over time.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    Read More
leave a message

home

products

WhatsApp

Contact Us